Lp → L

Proposition

Let X X XX be a measure space, with positive measure μ μ mu\mu. Assume f L r ( μ ) f L r ( μ ) f inL^(r)(mu)f\in L^r(\mu ) for some real r r rr, and f < f < ||f||_(oo) < oo\|f\|_\infty <\infty. We then assert that f p f f p f ||f||_(p)rarr||f||_(oo)\|f\|_p\to \|f\|_\infty as p p p rarr oop\to \infty.

Proof

If f = 0 f = 0 ||f||_(oo)=0\|f\|_\infty=0, then f = 0 f = 0 f=0f=0 a.e., and consequently, f p = 0 f p = 0 ||f||_(p)=0\|f\|_p=0 for all real positive p p pp. The result then follows trivially.
Otherwise, put F = f f F = f f F=(f)/(||f||_(oo))F=\frac{f}{\|f\|_\infty}, and let 0 < ε < 1 0 < ε < 1 0 < epsi < 10<\varepsilon<1 be given. Choose 0 < δ < ε 0 < δ < ε 0 < delta < epsi0<\delta <\varepsilon. Since F = 1 F = 1 ||F||_(oo)=1\|F\|_\infty=1, it follows that for sufficiently large p R + p R + p inR^(+)p\in\mathbb{R}^+: ( 1 ε 1 δ ) p < μ ( | F | 1 ( ( 1 δ , ) ) ) , 1 ε 1 δ p < μ ( | F | 1 ( ( 1 δ , ) ) ) , ((1-epsi)/(1-delta))^(p) < mu(|F|^(-1)((1-delta,oo))),\left(\frac{1-\varepsilon}{1-\delta}\right)^p<\mu \bigg( |F|^{-1}\Big( (1-\delta,\infty ) \Big)\bigg),so that 1 ε < ( 1 δ ) χ | F | 1 ( ( 1 δ , ) ) p F p . 1 ε < ( 1 δ ) χ | F | 1 ( ( 1 δ , ) ) p F p . 1-epsi < ||(1-delta)chi_(|F|^(-1)((1-delta,oo)))||_(p) <= ||F||_(p).1-\varepsilon<\left\|(1-\delta ) \chi_{|F|^{-1}\big( (1-\delta,\infty ) \big)}\right\|_p\leq \left\|F\right\|_p.Next: since | F | 1 | F | 1 |F| <= 1|F|\leq 1 a.e., then p > r p > r p > rp>r implies | F | p | F | r | F | p | F | r |F|^(p) <= |F|^(r)|F|^p\leq |F|^r a.e. and hence F p F r r / p F p F r r / p ||F||_(p) <= ||F||_(r)^(r//p)\|F\|_p\leq \|F\|_r^{r/p}.
As 0 < F r r < 0 < F r r < 0 < ||F||_(r)^(r) < oo0<\|F\|_r^{r}<\infty, it follows that F r r / p 1 F r r / p 1 ||F||_(r)^(r//p)rarr1\|F\|_r^{r/p}\to 1 as p p p rarr oop\to\infty. Thus, F p 1 F p 1 ||F||_(p)rarr1\|F\|_p\to 1 as p p p rarr oop\to \infty. It is then trivial to deduce f p f f p f ||f||_(p)rarr||f||_(oo)\|f\|_p\to \|f\|_\infty as p p p rarr oop\to \infty. / / / / / / / / ////////////
Additionally, this relation still holds when f = f = ||f||_(oo)=oo\|f\|_\infty=\infty, but this verification is easier, and is thus left as an exercise for the reader.

References

Rudin, Walter. Real and Complex Analysis. 3rd ed, McGraw-Hill, 1987.

Recommended for you

Jintang Li
Adversarial Learning on Graph
Adversarial Learning on Graph
This review gives an introduction to Adversarial Machine Learning on graph-structured data, including several recent papers and research ideas in this field. This review is based on our paper “A Survey of Adversarial Learning on Graph”.
7 points
0 issues