Distribution

1. Definition of distribution

Without explanation, we always assume that Ω R n Ω R n Omega subR^(n)\Omega\subset\mathbb{R}^{n} is a nonempty open set, where n 1 n 1 n⩾1n \geqslant 1. Given the compact set K R n K R n K subR^(n)K\subset\mathbb{R}^{n}, we use C K ( Ω ) C K ( Ω ) C_(K)^(oo)(Omega)C_ {K}^{\infty} (\Omega) to represent the set of smooth functions supported by K Ω K Ω K sub OmegaK\subset \Omega, i.e
C K ( Ω ) = { f C ( Ω ) supp ( f ) K } . C K ( Ω ) = f C ( Ω ) supp ( f ) K . C_(K)^(oo)(Omega)={f inC^(oo)(Omega)∣supp(f)sub K}.C_ {K}^{\infty}(\Omega)=\left\{f \in C^{\infty}(\Omega) \mid \operatorname{supp}(f) \subset K\right\} .
Given a multiple indicator α = ( α 1 , , α n ) α = α 1 , , α n alpha=(alpha_(1),cdots,alpha_(n))\alpha = \left(\alpha_{1}, \cdots, \alpha_{n}\right), where each component is a nonnegative integer, and the symbol α φ α φ del^(alpha)varphi\partial^{\alpha}\varphi represents the following multiple partial derivatives
x 1 α 1 x 2 α 2 x n α n φ , x 1 α 1 x 2 α 2 x n α n φ , del_(x_(1))^(alpha_(1))del_(x_(2))^(alpha_(2))cdotsdel_(x_(n))^(alpha_(n))varphi,\partial_ {x_{1}}^{\alpha_{1}} \partial_ {x_{2}}^{\alpha_{2}} \cdots \partial_ {x_{n}}^{\alpha_{n}} \varphi,
where x i α i = α i x i α i x i α i = α i x i α i del_(x_(i))^(alpha_(i))=(del^(alpha_(i)))/(delx_(i)^(alpha_(i)))\partial_ {x_{i}}^{\alpha_{i}}=\frac{\partial^{\alpha_{i}}}{\partial x_{i}^{\alpha_{i}}}. In addition, we order
| α | = i = 1 n α i . | α | = i = 1 n α i . |alpha|=sum_(i=1)^(n)alpha_(i).|\alpha|=\sum_ {i=1}^{n} \alpha_ {i} .
We use D ( Ω ) = C 0 ( Ω ) D ( Ω ) = C 0 ( Ω ) D(Omega)=C_(0)^(oo)(Omega)\mathcal{D} (\Omega) = C_ {0}^{\infty} (\Omega) represents a set of smooth functions defined on Ω Ω Omega\Omega and with compact support. We call it {\bf test function space}. By definition, for any φ D ( Ω ) φ D ( Ω ) varphi inD(Omega)\varphi \in \mathcal{D} (\Omega), there is a compact set K Ω K Ω K sub OmegaK \subset\Omega(this is the compact set in R n R n R^(n)\mathbb{R}^{n}), so that f | Ω K 0 f Ω K 0 f|_(Omega-K)-=0\left. f\right|_{\Omega -K} \equiv 0, that is, for any X Ω K , f ( x ) = 0 X Ω K , f ( x ) = 0 X in Omega-K,f(x)=0X \in \Omega -K, f (x) = 0.
Definition 1(Test function space): On the space D ( Ω ) D ( Ω ) D(Omega)\mathcal{D}(\Omega), we specify the following convergence (topology): given the function sequence { φ p } p 1 D ( Ω ) φ p p 1 D ( Ω ) {varphi_(p)}_(p⩾1)subD(Omega)\left\{\varphi_{p} \right\}_ {p \geqslant 1} \subset \mathcal{D} (\Omega), the so-called sequence converges to 0 D ( Ω ) 0 D ( Ω ) 0inD(Omega)0 \in \mathcal{D}(\Omega) ( is recorded as φ p D ( Ω ) 0 ) ( is recorded as φ p D ( Ω ) 0 ) ("is recorded as"varphi_(p)longrightarrow^(D(Omega))0)(\mbox {is recorded as} \, \varphi_{p} \stackrel{\mathcal{D}(\Omega)} {\longrightarrow} 0), which refers to
  1. There is a compact set of K Ω K Ω K sub OmegaK \subset \Omega, so that for each p 1 p 1 p⩾1p \geqslant 1, there is sup ( φ p ) K sup φ p K sup(varphi_(p))sub K\operatorname {sup} \left (\varphi_{p} \right) \subset K;
  2. For each multiple indicator α α alpha\alpha, function sequence { α φ p } p 1 α φ p p 1 {del^(alpha)varphi_(p)}_(p⩾1)\left\{\partial^{\alpha} \varphi_ {p}\right\}_{p\geqslant 1} converge to 0 0 00 uniformly on K K KK, i.e., lim p α φ p L ( K ) = 0. lim p α φ p L ( K ) = 0. lim_(p rarr oo)||del^(alpha)varphi_(p)||_(L^(oo)(K))=0.\lim_{p \rightarrow\infty}\left\|\partial^{\alpha} \varphi_ {p}\right\|_ {L^{\infty}(K)}=0.
Definition 2(distribution) A distribution (also known as generalized function) on Ω Ω Omega\Omega refers to a linear functional (linear mapping) on D ( Ω ) D ( Ω ) D(Omega)\mathcal{D}(\Omega):
u : D ( Ω ) C , φ u , φ , u : D ( Ω ) C , φ u , φ , u:D(Omega)rarrC,quad varphi|->(:u,varphi:),u: \mathcal{D}(\Omega) \rightarrow \mathbb{C}, \quad \varphi \mapsto\langle u, \varphi\rangle,
meet the following two conditions
  1. For any φ , ψ D ( Ω ) φ , ψ D ( Ω ) varphi,psi inD(Omega)\varphi, \psi \in \mathcal{D} (\Omega) and α , β C α , β C alpha,beta inC\alpha, \beta \in \mathbb{C}, we have u , α φ + β ψ = α u , φ + β u , ψ u , α φ + β ψ = α u , φ + β u , ψ (:u,alpha varphi+beta psi:)=alpha(:u,varphi:)+beta(:u,psi:)\langle u, \alpha \varphi+\beta \psi\rangle=\alpha\langle u, \varphi\rangle+\beta\langle u, \psi\rangle
  2. For any compact set K Ω K Ω K sub OmegaK \subset \Omega, there are nonnegative integers p p pp and normal numbers C C CC ( p p pp and C C CC depend on K K KK), so that for any φ C K ( Ω ) φ C K ( Ω ) varphi inC_(K)^(oo)(Omega)\varphi \in C_ {K}^{\infty} (\Omega), both | u , φ | C sup | α | p α φ L ( K ) | u , φ | C sup | α | p α φ L ( K ) |(:u,varphi:)|leqslant Cs u p_(|alpha|leqslant p)||del^(alpha)varphi||_(L^(oo)(K))|\langle u, \varphi\rangle| \leqslant C \sup _ {|\alpha| \leqslant p}\left\|\partial^{\alpha} \varphi\right\|_ {L^{\infty}(K)}
If the above selection of p p pp does not depend on the selection of compact set k k kk, then we call the smallest such nonnegative integer p p pp the order of distribution u u uu.
We use D ( Ω ) D ( Ω ) D^(')(Omega)\mathcal{D}^{\prime} (\Omega) to represent the whole distribution defined on Ω Ω Omega\Omega, and specify the following convergence (topology): the so-called distribution sequence { u p } p 1 D ( Ω ) u p p 1 D ( Ω ) {u_(p)}_(p⩾1)subD^(')(Omega)\left \{u_{p} \right \}_ {p \geqslant 1} \subset \mathcal{D}^{\prime} (\Omega) converges to 0 D ( Ω ) 0 D ( Ω ) 0inD^(')(Omega)0 \in \mathcal{D}^{\prime} (\Omega)(this is a linear mapping that maps all functions to 0), which is recorded as u p D ( Ω ) 0 u p D ( Ω ) 0 u_(p)longrightarrow^(D^(')(Omega))0u_{p} \stackrel {\mathcal{D}^{\prime} (\Omega)}{\longrightarrow}0, which means that we have any test function φ D ( Ω ) φ D ( Ω ) varphi inD(Omega)\varphi \in \mathcal{D} (\Omega)
lim p u p , φ = 0 lim p u p , φ = 0 lim_(p rarr oo)(:u_(p),varphi:)=0\lim _ {p \rightarrow \infty}\left\langle u_ {p}, \varphi\right\rangle=0
We usually say that a distribution can be paired with a (compactly supported) smooth function to obtain a number, that is
D ( Ω ) × D ( Ω ) , ( u , φ ) u , φ D ( Ω ) × D ( Ω ) , ( u , φ ) u , φ D^(')(Omega)xxD(Omega),quad(u,varphi)|->(:u,varphi:)\mathcal{D}^{\prime}(\Omega) \times \mathcal{D}(\Omega), \quad(u, \varphi) \mapsto\langle u, \varphi\rangle
Remark: Any given distribution of u D ( Ω ) u D ( Ω ) u inD^(')(Omega)u \in \mathcal{D}^{\prime}(\Omega), which is actually a {\bf continuous} linear functional on D ( Ω ) D ( Ω ) D(Omega)\mathcal{D} (\Omega). We have not discussed the theory of topological linear space related to distribution in detail, so we do not intend to expand this point too much (which has no impact on the understanding of distribution theory). The so-called continuity can be described in the following sequence language: for any test function sequence φ p D 0 φ p D 0 varphi_(p)longrightarrow^(D)0\varphi_{p} \stackrel{\mathcal{D}}{\longrightarrow} 0, we all have
lim p u , φ p = 0 lim p u , φ p = 0 lim_(p rarr oo)(:u,varphi_(p):)=0\lim_{p\rightarrow \infty}\left\langle u, \varphi_ {p}\right\rangle=0
The proof of this proposition only needs to use the concept of distribution.

2. Examples of distribution

As an example, let's first learn some important distributions:
Example 1 (Dirac function)
For any a Ω a Ω a in Omegaa \in \Omega, we can define the distribution Δ a D ( Ω ) Δ a D ( Ω ) Delta_(a)inD^(')(Omega)\Delta_ {a} \in \mathcal{D}^{\prime}(\Omega). Where, for any φ D ( Ω ) φ D ( Ω ) varphi inD(Omega)\varphi \in \mathcal{D} (\Omega), we define
δ a , φ = φ ( a ) . δ a , φ = φ ( a ) . (:delta_(a),varphi:)=varphi(a).\left\langle\delta_ {a}, \varphi\right\rangle=\varphi(a).
Let's verify Δ a Δ a Delta_(a)\Delta_ {a} is actually a distribution:
For any compact set K Ω K Ω K sub OmegaK \subset \Omega, if a K a K a!in Ka \notin K, then for any φ C K ( Ω ) φ C K ( Ω ) varphi inC_(K)^(oo)(Omega)\varphi\in C_{K}^{\infty}(\Omega), we all have
δ a , φ = 0 . δ a , φ = 0 . (:delta_(a),varphi:)=0.\left\langle\delta_ {a}, \varphi\right\rangle=0 .
If a K a K a in Ka \in K, then it makes any φ C K ( Ω ) φ C K ( Ω ) varphi inC_(K)^(oo)(Omega)\varphi \in C_ {K}^{\infty} (\Omega), we have
| δ a , φ | = | φ ( a ) | 1 sup | α | 0 α φ L ( K ) . δ a , φ = | φ ( a ) | 1 sup | α | 0 α φ L ( K ) . |(:delta_(a),varphi:)|=|varphi(a)|leqslant1*s u p_(|alpha|leqslant0)||del^(alpha)varphi||_(L^(oo)(K)).\left|\left\langle\delta_ {a}, \varphi\right\rangle\right|=|\varphi(a)| \leqslant 1 \cdot \sup _ {|\alpha| \leqslant 0}\left\|\partial^{\alpha} \varphi\right\|_ {L^{\infty}(K)} .
Therefore, we can take q = 0 q = 0 q=0q = 0 and C = 1 C = 1 C=1C = 1 in the definition of distribution.
In particular, we also know The order of δ a δ a delta_(a)\delta_{a} is 0 0 00.
Example 2 (locally integrable function)
Given the open set Ω Ω Omega\Omega (always equipped with Borel algebra and Lebesgue measure), the so-called locally integrable function refers to the function integrable on each compact local, that is, the function f f ff (the equivalent class of the corresponding almost everywhere equal function). For any compact set K Ω K Ω K sub OmegaK \subset \Omega, the function f 1 K L 1 ( Ω ) f 1 K L 1 ( Ω ) f*1_(K)inL^(1)(Omega)f \cdot \mathbf{1}_{K} \in L^{1}(\Omega). We use L l o c 1 ( Ω ) L l o c 1 ( Ω ) L_(loc)^(1)(Omega)L_\mathrm{loc}^{1}(\Omega) represents a locally integrable function on Ω Ω Omega\Omega.
For any f L l o c 1 ( Ω ) f L l o c 1 ( Ω ) f inL_(loc)^(1)(Omega)f \in L_\mathrm{loc}^{1} (\Omega), we define the linear functional on D ( Ω ) D ( Ω ) D(Omega)\mathcal{D} (\Omega):
T f : D ( Ω ) C , φ T f , φ = Ω f ( x ) φ ( x ) d x . T f : D ( Ω ) C , φ T f , φ = Ω f ( x ) φ ( x ) d x . T_(f):D(Omega)rarrC,varphi|->(:T_(f),varphi:)=int_(Omega)f(x)varphi(x)dx.T_ {f}: \mathcal{D}(\Omega) \rightarrow \mathbb{C}, \varphi \mapsto\left\langle T_ {f}, \varphi\right\rangle=\int_ {\Omega} f(x) \varphi(x) d x.
Proposition 1 For given χ ( x ) D ( R n ) χ ( x ) D R n chi(x)inD(R^(n))\chi(x) \in \mathcal{D}\left(\mathbb{R}^{n}\right) , it is assumed that
R n χ ( x ) d x = 1. R n χ ( x ) d x = 1. int_(R^(n))chi(x)dx=1.\int_{\mathbb{R}^{n}} \chi(x) d x=1.
For any ε > 0 ε > 0 epsi > 0\varepsilon>0, we define
χ ε ( x ) = 1 ε n χ ( x ε ) . χ ε ( x ) = 1 ε n χ x ε . chi_(epsi)(x)=(1)/(epsi^(n))chi((x)/( epsi)).\chi_{\varepsilon}(x)=\frac{1}{\varepsilon^{n}} \chi\left(\frac{x}{\varepsilon}\right).
Then we have, in distrubution sense, χ ε D δ 0 χ ε D δ 0 chi_(epsi)longrightarrow^(D^('))delta_(0)\chi_{\varepsilon} \stackrel{\mathcal{D}^{\prime}}{\longrightarrow} \delta_{0} as ε 0 ε 0 epsi rarr0\varepsilon \rightarrow 0.

Recommended for you

Kaichao You
A New Paradigm for Exploiting Pre-trained Model Hubs
A New Paradigm for Exploiting Pre-trained Model Hubs
It is often overlooked that the number of models in pre-trained model hubs is scaling up very fast. As a result, pre-trained model hubs are popular but under-exploited. Here a new paradigm is advocated to sufficiently exploit pre-trained model hubs.
8 points
0 issues